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Cardiorespiratory-Based Sleep Staging in Subjects
With Obstructive Sleep Apnea

Stephen J. Redmond* and Conor Heneghan, Member, IEEE

Abstract—A cardiorespiratory-based automatic sleep staging
system for subjects with sleep-disordered breathing is described.
A simplified three-state system is used: Wakefulness (W), rapid
eye movement (REM) sleep (R), and non-REM sleep (S). The
system scores the sleep stages in standard 30-s epochs. A number
of features associated with the epoch RR-intervals, an inductance
plethysmography estimate of rib cage respiratory effort, and
an electrocardiogram-derived respiration (EDR) signal were
investigated.

A subject-specific quadratic discriminant classifier was trained,
randomly choosing 20% of the subject’s epochs (in appropriate
proportions of W, S and R) as the training data. The remaining
80% of epochs were presented to the classifier for testing. An
estimated classification accuracy of 79% (Cohen’s value of
0.56) was achieved. When a similar subject-independent classifier
was trained, using epochs from all other subjects as the training
data, a drop in classification accuracy to 67% ( = 0 32) was
observed. The subjects were further broken in groups of low
apnoea-hypopnea index (AHI) and high AHI and the experiments
repeated. The subject-specific classifier performed better on
subjects with low AHI than high AHI; the performance of the
subject-independent classifier is not correlated with AHI.

For comparison an electroencephalograms (EEGs)-based classi-
fier was trained utilizing several standard EEG features. The sub-
ject-specific classifier yielded an accuracy of 87% ( = 0 75),
and an accuracy of 84% ( = 0 68) was obtained for the sub-
ject-independent classifier, indicating that EEG features are quite
robust across subjects.

We conclude that the cardiorespiratory signals provide mod-
erate sleep-staging accuracy, however, features exhibit significant
subject dependence which presents potential limits to the use of
these signals in a general subject-independent sleep staging system.

Index Terms—Breathing, ECG, EEG, obstructive sleep apnea,
respiration, sleep stage.

I. INTRODUCTION

SLEEP apnea is a cardio-respiratory disorder characterized
by brief interruptions of breathing during sleep, and is

often more generically described as sleep disordered breathing
(SDB). Typical sleep patterns of a sufferer can involve heavy
snoring interspersed with both partial and complete obstruction
of the upper airway, leading to partial or complete waking and
gasping for breath. The primary health implications of sleep
apnea are its impact on the cardiovascular system (increased
levels of hypertension, coronary arterial disease, arrhythmias),
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increased accident levels due to sleepiness, and quality of life
issues. Moreover, obstructive sleep apnea (OSA) is not a rare
condition. It occurs in 2%–4% of middle-aged adults [1] and
in 1%–3% of preschool children [2]. However, despite the fact
that apnea has such health and quality of life implications,
there is a surprisingly low public and medical awareness of the
illness. For example, of the 10–20 million sufferers in the U.S.
with moderate-to-severe sleep apnea, it is estimated that only
10%–15% have been diagnosed [3].

A contributing factor to the low level of awareness of this
disease is the relatively limited access to diagnostic tests in
the general population. In most countries, the gold standard
for diagnosis of sleep apnea is overnight polysomnography
(PSG) (sleep study), which is carried out in a specialized
hospital-based sleep laboratory. Polysomnography routinely
records and analyzes electroencephalograms (EEGs), elec-
tromyograms, electroocculograms, electrocardiogram (ECG),
pulse oximetry, airflow, and respiratory effort. One of the
outcomes of PSG is the apnea hypopnea index (AHI), which
is a measure of the average number of apneas and hypopneas
per hour of sleep. A complete cessation of breathing is termed
an apnea, and a partial reduction in airflow (e.g., to less than
50% of its normal value) is termed a hypopnea. It is widely
accepted that PSG is a thorough and reliable test. However, it is
relatively expensive, due to the need for the study to take place
in a hospital setting, the requirement to have a sleep technician
in attendance overnight, and the need to manually ‘score’ the
resultant measurements. Hence, many sleep centers worldwide
are currently operating at full capacity and PSG usually suffers
from a low availability reflected in up to 6-mo. waiting lists
for testing. Therefore, there is considerable interest in the
development of reliable low-cost techniques for identification
of subjects with sleep apnea.

An interesting possibility to overcome this diagnostic bottle-
neck is the use of more limited ambulatory cardio-respiratory
studies, suitable for at-home use. Recent examples of such
technology include the Embletta system (Medcare, Reykjavik,
Iceland) which measures respiratory effort, pulse rate, airflow,
oxygen saturation, position and activity [4], and the Nova-
somQSG (Sleep Solutions, Palo Alto, CA) [5] which measures
airflow, respiratory effort, oxygen saturation, and pulse rate.
These systems can directly reveal changes in the respiratory
patterns, and hence be used to recognize apnea and hypopneas.
Other recent work has focused on the use of the surface ECG
obtained from Holter monitoring to reliably discriminate those
suffering from obstructive sleep apnea [6]–[11]. These systems
work by monitoring characteristic time-domain variations in
heart rate [cyclical variations in heart rate (CVHRs)], which are
associated with obstructive apnea events, and through the use
of ECG-derived respiration signals.
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However, a limitation of both respiration-based and
ECG-based systems is that they provide no information about
sleep state to the clinician, even at the level of distinguishing
sleep-wake states. Accordingly, this study was designed to see
if cardio-respiratory measurements alone (ECG and respiratory
effort in this case) would be sufficient to provide information
about the sleep state of the subject.

It is worth briefly reviewing the concept of sleep state as de-
fined clinically. Sleep is broken into two distinct classes: rapid
eye movement (REM) and non-REM sleep. Non-REM sleep is
further subdivided into four levels—sleep stages 1–4, which rep-
resent progressively deeper stages of sleep. Sleep states are de-
fined primarily with respect to the EEG, following rules estab-
lished by Rechtschaffen and Kales [12]. The process of deter-
mining sleep state is called sleep staging and is typically carried
out as the first part of the polysomnogram scoring process. Fol-
lowingacquisitionofthephysiologicalsignals, thesubject’ssleep
is scored in blocks of 30 s into one of six stages: Wake, REM, and
Sleep Stages 1–4. Scoring is typically carried out in two stages;
an automated system performs an initial classification, which is
followed by manual scoring to correct errors. However, since the
R&K rules are somewhat arbitrary, and subject to operator inter-
pretation, even highly experienced scorers have some degree of
variability (with an estimated kappa coefficient of 0.80 [13]).
In[14]fiveexpertscorersfromthreesleeplaboratorieswereasked
to independently score 62 records. A mean agreement (where all
5 scorers agree on a epoch) of 73% was achieved.

Sleep staging is clinically useful in the assessment of sleep
apnea for several reasons: the Apnea-Hypopnea Index counts
only apneas and hypopneas which occur during sleep; and an
overall level of sleep quality or sleep disruption can be judged
by the relative distribution of sleep stages. Therefore, systems
which attempt to derive an Apnea Hypopnea Index should
ideally incorporate some mechanism for determining sleep
state. Since sleep state by definition is based on EEG analysis,
it is nontrivial to determine sleep state by measurement of other
physiological variables.

However, it is not unreasonable to expect that correlates of
the EEG-defined sleep stages can also be present in the ECG,
primarily through autonomic modulation of the heart’s activity.
Indeed, previous studies have shown that the ECG contains rel-
evant information about sleep stages [15]–[20]. In these studies,
several ECG-derived features (powers in the very low frequency
(VLF), low-frequency (LF), and high-frequency (HF) spectral
bands, and the LF/HF ratio) have been described which allow
discrimination with various degrees of accuracy between sleep
stages. Changes in respiration have also been observed with re-
spect to sleep state. For example, it is generally accepted that
respiration tends to be more irregular during REM sleep than
non-REM [21]. Kantelhardt et al. have proposed that long-range
temporal correlation properties differ for REM and non-REM
sleep [22].

Given this background, the aim of this current study is to see
whether measurements of ECG and respiration can provide a
classification at the level of Wake, REM Sleep and Non-REM
Sleep (which we denote W, R, and S in the following), with the
goal of augmenting ambulatory cardio-respiratory systems for
detection of SDB.

Furthermore, we considered two possible scenarios. In the
first, we attempt to design a subject-dependent classification

system, using a supervised classification methodology. In such a
scenario, each subject has at least one night of recording which
has been at least partially sleep staged using full EEG recording.
The resulting classifier can then be used to classify the unlabeled
section of the night’s sleep, or more likely, subsequent nights of
recording. The practical benefit of that is to allow multi-night
recordings in the home using the limited cardio-respiratory mea-
surements. A theoretical benefit is that it shows whether or not
there is sufficient information in the ECG and respiration sig-
nals to perform sleep staging.

A second scenario, which is more practical, is to design a
subject-independent system, whereby classifier training is car-
ried out across a number of subjects, and where the resultant
system should provide robust performance on randomly chosen
subjects not represented in the training set.

In order to assess the accuracy of our results, we will use sev-
eral performance measures. The first is overall accuracy (which
is simply the number of 30-s epochs correctly classified). The
second is the kappa coefficient (see Appendix I), which is
a measure that also accounts for classifications which agree
purely due to chance alone. Finally, we will consider the error
between the true sleep efficiency (total sleep time/time in bed),
and the estimated sleep efficiency.

This paper is organized as follows. In Section II, we describe
the datasets used, and the processing of these signals to produce
robust RR, ECG-derived respiration, and respiratory effort sig-
nals. In Section III, we describe the methodology for designing
both subject dependent and subject-independent classifiers. We
provide details of the features used in classification, feature se-
lection techniques, the chosen classifier model, and the valida-
tion techniques used to reduce training bias. In Section IV, we
describe the results of the classifiers designed in Section III, and
also make comparison with a benchmark EEG-based automated
sleep staging system designed on the same data sets. Section V
discusses some of the implications of our results.

II. METHODS: SIGNAL PROCESSING

A. Database

Data from a total of 37 subjects who were being evaluated
for the presence of obstructive sleep apnea were used in this
study. The subjects were drawn from data supplied by two lab-
oratories. 27 subjects were examined at the Stanford University
Sleep Disorders Center in autumn of 2003. A full polysomno-
graph (Sandman, Puritan Bennett, Kanata, ON, Canada) was
obtained for each subject, but in this study we only consider the
EEG channel C4-A1, the ribcage respiratory effort as measured
by inductance plethysmography, and the ECG (modified lead
V2). The EEG signal was sampled at 128 Hz, the ribcage
respiratory effort at 16 Hz and the ECG signal at 256 Hz.
The remaining 10 subjects were examined for OSA at St.
Michael’s Hospital, Toronto, also using a full polysomnograph
(Sandman, Puritan Bennett, Kanata, ON, Canada). Again, only
the C4-A1 EEG channel, ribcage respiratory effort, and ECG
signals were utilized. The sampling rates were identical to
those in the Stanford data. In both cases, sleep staging, and
subsequent respiratory event scoring was carried out by a single
experienced polysomnogram technician. Table I summarizes
the demographic and clinical data for all subjects.
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TABLE I
DEMOGRAPHIC INFORMATION

Later, we wish to loosely group the subjects into two classes:
low AHI and high AHI. A low AHI in this study is arbitrarily
defined as an . There were 14 subjects with high
AHIs, with a mean AHI of 26 and a standard deviation of 19.8.
The remaining 23 subjects with low AHIs had a mean AHI of
3.4 and a standard deviation of 2.2.

B. Electrocardiogram Processing

A Hilbert-transform-based R peak detector was used to find
the R peak locations in each subject’s ECG [23]. The accuracy
of the detector is estimated at approximately 98% [24]. The
R peak locations are used both to derive RR-based features
which may directly provide information about sleep stage, and
in the calculation of an ECG-derived respiration (EDR) signal.
No attempt was made to distinguish NN beats (normal sinus
rhythm) from others. We noted that the ECG signal was slightly
clipped in several subjects’ recordings. This clipping will cause
errors in the locations of some of the R peak locations and
hence the RR interval series. To investigate the impact of such
errors we simulated the effects of ECG clipping on the RR
interval series by comparing the RR interval series derived
from the unclipped ECG signals with the RR interval series
from the same ECG signals after clipping at 80%. The details
of the comparison are contained in Appendix II. We concluded
that the RR interval series error introduced through clipping is
negligible compared to the overall physiological variability of
the RR intervals and hence does not introduce any significant
error into our calculation of RR-based features.

C. Electrocardiogram-Derived Respiration (EDR)

Even though, we will subsequently use a directly acquired
measure of respiratory effort (inductance plethysmograph), we
decided to determine the utility of a respiratory estimate directly
acquired from the ECG. It has been previously shown by several
researchers that the magnitude of the ECG signal is amplitude
modulated by respiration [25], [26]. Other factors may also
cause changes in amplitude such as variations in electrode
contact resistance (or capacitance) caused by movement, or a
change in the electrical axis of the heart caused by altered body
position. Hence our processing is aimed toward extracting the
modulation that is the result of respiration and rejecting any
electrode or body position influences. We label the derived
estimate of respiration as the EDR signal.

We have found that a useful EDR signal can be constructed
by tracing the envelope of the T peaks, or for a more noise robust
estimate, integrating several samples around each T wave peak.

Previous researchers have focused on calculating an EDR by
using the QRS complexes [11]. However, as mentioned above,
for our data sets it was found that the R peak was clipped in sev-
eral subjects’ recordings, so the T wave was used instead to de-
rive the EDR. A description of the methods used in deriving the
EDR signal from the ECG T waves is contained in Appendix III.

D. RR Interval Series Processing

In an attempt to remove subject-dependence from the fea-
tures, we carried out a normalization step on the RR interval
series. For each subject, a normalized RR series was calculated
by dividing by the mean RR interval (producing an RR sequence
with a unity mean). This normalized RR interval series is de-
noted as . However, since we may want to calculate
spectral features in cycles/s as well as cycles/interval, we retain
both normalized and raw RR series.

The RR interval series exhibits significant variation over the
entire night’s sleep. An interesting marker of changes in sleep
state may be the relative changes in the RR interval series rather
than the absolute value. We quantified the relative changes in
the RR series by detrending the series with a 15-min
moving average. We denote this deviant of the RR series as

. The detrended RR is simply the current
interval length minus the average length over the pre-
vious 15 min. This may help to account for underlying variation
in the ECG due to circadian rhythm.

E. Outlier Correction in RR and EDR Signals

TheRRinterval seriesandtheEDRsignalbothexhibitoutlying
points due to noise and QRS misdetections. To correct the
impulse noise in both signals, we used the following technique.
A smoothed estimate of the signal to be corrected is obtained
using a median filter 5 samples in length. The difference of the
signal from its median filtered equivalent is measured. If the
absolute value of this difference at any point is above a certain
threshold the signal at that point is replaced with its equivalent
median value. The use of a median filtered equivalent signal
essentially allows comparison of the errors to other points
in the immediate signal locality, which is advantageous, as a
fixed threshold will not work when the signal to be corrected
contains any large amplitude drift component. Standard median
filtering with a filter length of say, 3 samples, will also be
reasonably effective at impulse noise removal, however, the
signal will be altered (although perhaps negligibly) in regions
containing no noise. Therefore, there is a tradeoff between
preserving the signal in regions of no noise, and correcting
for the effect of outliers in other regions.

F. Inductance Plethysmograph Preprocessing

Features directly related to respiration can be determined by
analysis of the ribcage respiratory effort signal. This signal is also
processed as follows. First, the signal is low pass filtered with a
tenth-order Butterworth filter with a cutoff of 0.8 Hz, to remove
HF noise and variation above respiratory frequencies. Since,
the ribcage respiratory effort will in general be uncalibrated
in terms of absolute tidal volume, we decided to normalize
it for each subject, and consider only relative differences.

The ribcage signal is normalized by first detecting the turning
points and then calculating the difference between sequential
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peaks and troughs. The median peak-to-trough amplitude over
the entire record is then determined and the signal is normalized
by dividing through by this value, so that the median peak-to-
trough amplitude is unity.

III. METHODS: CLASSIFIER DESIGN AND FEATURE

GENERATION

A. Feature Extraction

Given the set of ECG and respiration signals described
above, we now consider the design of an automated sleep
staging system based on those signals. In designing our sleep
stager, we decided to extract features from each 30-s epoch
which are consistent with those suggested by the literature.

RR-Interval Series Features: Spectral representations of the
RR interval series have been widely used previously for a
variety of applications [6]. To calculate a power spectral density
estimate, the data ( intervals falling within the epoch)
from the epoch is zero-meaned, windowed (using a Hanning
window), and the square of its discrete Fourier transform (DFT)
is taken as a single periodogram estimate of the interval-based
power spectral density. The -ordinate of this estimate is in
cycles/interval, which can be converted to cycles/s by dividing
by the mean RR for the epoch. From this spectral estimate,
five features are calculated:

• the logarithm of the normalized LF (power in the 0.05–0.15
Hz band),

• the logarithm of the normalized HF (power in the 0.15–0.5
Hz band), where normalization is achieved by dividing by
the total power in the VLF, LF, and HF bands (0.01–0.5
Hz),

• the LF/HF power ratio,
• the meanrespiratory frequency,which isdefinedby finding

the frequency of maximum power in the HF band, and
• the logarithm of the power at the mean respiratory fre-

quency.
In addition to the RR spectral features, we also used a range of

temporal RR features for each 30-s epoch. These features were:

• the mean ;
• the standard deviation of ;
• the difference between the longest and shortest

interval in the epoch;
• the mean value of the in the epoch.

The difference between longest and shortest within
the epoch is an attempt to quantify some of the dynamic be-
havior within the epoch (perhaps waking epochs are more dy-
namic than sleep, etc.) The mean in one epoch is an
attempt to examine the short-time variation in the RR interval
series. Since each value is a measure of the present

relative to the previous 15 min of , the mean
of an epoch is a measure of whether the heart rate

in the present epoch is less than or greater than it has been over
the last 15 min. This allows the discrimination of sudden rises
in the heart rate, indicating short arousals, which may not rise
significantly above the heart rate of other epochs of sleep.

ECG Derived Respiratory Features: The EDR epoch is
taken as the EDR points corresponding to the R peaks falling
within the epoch. The spectrum is calculated as for the RR
interval series. From the EDR spectrum, the VLF (0.01–0.05

Hz), LF (0.05–0.15 Hz), HF (0.15–0.5 Hz) powers, respiratory
frequency, and the power at respiratory frequency are esti-
mated. The standard deviation of each epoch’s EDR was also
calculated.

RR-EDR Cross-Spectral Features: The VLF (0.01–0.05 Hz),
LF (0.05–0.15 Hz), HF (0.15–0.5 Hz) powers were calculated
from the cross-spectrum of the RR interval series and EDR for
each epoch.

Ribcage Respiratory Effort Features: As with the RR in-
terval series and the EDR, we calculate the ribcage respiratory
effort spectrum as the square of the DFT of the ribcage respi-
ratory effort signal for that epoch, windowed with a Hanning
window. From the spectrum we calculate the logarithm of the
power in the 3 bands—VLF (0.01–0.05 Hz), LF (0.05–0.15 Hz),
and HF (0.15–0.5 Hz). The definition of these bands is taken di-
rectly from the corresponding definitions for ECG signals. Fur-
thermore we estimate the respiratory frequency as the frequency
of peak power in the range of 0.05 Hz–0.5 Hz, and also the log-
arithm of the power at that frequency.

In addition we derive several time domain features from
the ribcage respiratory effort signal. The first is an estimate
of its envelope power. We find the standard deviation of the
peak values for the epoch, and similarly the standard deviation
of the troughs. We then find the mean of the two values and
divide by the standard deviation of the ribcage respiratory
effort signal for the epoch. Essentially we are measuring the
average top and bottom envelope powers as a fraction of
the total signal power for the epoch. We denote this feature
“Envelope Power.” The second time domain feature attempts
to measure a breath-by-breath correlation. We define a breath
cycle as the time from the trough of one breath to the trough of
the next. We find the cross-correlation of the adjacent breaths.
Clearly in most cases the breaths will be of different lengths,
in this case the shorter is padded with zeros to make it of
equal length. We find the maximum cross-correlation value
and divide it by the maximum of the energy of either breath
alone to normalize the maximum cross-correlation value. The
maximum cross-correlation values, for all pairs of adjacent
breaths in the epoch, are then averaged. We denote this feature
“Breath-by-Breath Correlation.” The third time domain feature
is a further measure of breath-by-breath variation. We take the
standard deviation of the time between peak locations, similarly
we take the standard deviation of the time between trough
locations. We then take the mean of these two deviations. We
denote this “Breath Length Variation”. Finally we derive a
second estimate of the respiratory frequency, using nonspectral
means. We calculate the mean time between adjacent peaks
and between adjacent troughs. The frequency of respiration is
calculated as the inverse of this time. We denote this feature
“Time Domain Respiratory Frequency.” One final note to make
in this section is that all estimates of respiratory frequency were
further normalized by subtracting (from each epoch’s estimate
of the frequency) the median value of that parameter over
all epochs for the entire night. This was deemed a necessary
step as the mean respiratory frequency will vary from subject
to subject. The median was subtracted as it is more robust
than the mean to outliers.

The complete list of features for each 30-s epoch is given in
Table II, and we will use the indices from this table in referring
to possible feature combinations later.



REDMOND AND HENEGHAN: CARDIORESPIRATORY-BASED SLEEP STAGING IN SUBJECTS WITH OBSTRUCTIVE SLEEP APNEA 489

TABLE II
FEATURE LIST

B. Classifier Model: Quadratic Discriminant Classifier

Following the feature extraction stage described above, each
30-sepochnowhasanassociatedsetof27features—9RR-based,
6EDR-based,3cross-spectral-basedand9ribcagerespiratoryef-
fortbased.The tool thatwewilluse forclassification isaquadratic
discriminant classifier (QDC), based on Bayes’ rule. In deriving
a decision rule for a QDC, gaussianity of the feature vector dis-
tributions, and independence between successive epochs is the-
oretically assumed. Neither gaussianity nor independence will
necessarily be satisfied. Note that in deriving features above, we
have attempted to ensure that each feature has an approximately
Gaussian distribution. This can be ensured, for example, by using
the logarithm of the spectral powers, rather than their absolute
values. Neglecting the dependence between successive epochs
will not negate the authenticity of the classification results, how-
ever, classification accuracy may be improved if the dependence
between epochs is considered as a post-processing step.

A quadratic discriminant classifier is derived as follows. Let
signify the th class. In this application there are three classes,

S, W, and R. Let denote the feature vector corresponding to
a certain epoch. The feature vector in this case contains at most
27 elements, which are a selection the features described in the
previous section. Using Bayes’ rule we wish to find the class
which will maximize the posterior probability

(1)

Maximizing the left-hand side of (1) is equivalent to maxi-
mizing its logarithm. Therefore, assuming a normal distribution
for the feature vector, becomes

(2)
where is the covariance matrix of the th class, and is the
mean vector of the th class. Substituting (2) into the natural
logarithm of (1), our problem is transformed into finding the
class which maximizes the discriminant value for a given
test feature vector

(3)

where

The class with the highest discriminant value is chosen as the
assigned class for that feature vector. To construct the quadratic
discriminant classifier, therefore, we must estimate the covari-
ance matrix and mean for the features corresponding to each
class, and also the prior probability of the class occurring.

C. Feature Subset Selection

In theory, with quadratic or linear discriminant classifiers, the
addition of features containing little or no relevant information
in the classification process will not degrade the performance of
the classifier. One could simply include all features in the classi-
fication process and features containing no information will be
“ignored” by the classifier. In practice this is rarely true—null
features add “noise” to the system, and the removal of these
redundant features can greatly improve results. However, with
27 features to choose from, we are allowed feature subset
combinations, so it is obviously not feasible to search all pos-
sible combinations. Various algorithms exist which allow effi-
cient searching of the feature subset combinations.

In this study, a form of the sequential forward floating search
(SFFS) algorithm was exploited to identify the feature subset
that will maximize the classification performance criterion [27].
The performance criterion we chose to maximize was Cohen’s
kappa statistic [28] described in Appendix I. The -coeffi-
cient is a measure of interrater agreement and takes into account
the prior probability of a-specific class occurring. The two raters
under comparison are our sleep staging system and the expert
polysomnograph annotators.

The SFFS algorithm operates as follows. Three passes are
made with the ordinary sequential forward selection (SFS) [27],
so that three features are selected. One pass of the SFS simply
adds the feature that most improves performance to the already
selected features. Next, “unselection” of a selected feature is
considered. The feature is found which most improves perfor-
mance by its removal, and it is unselected. However, if no im-
provement is seen by the removal of any features then no fea-
tures are unselected. Following the unselection phase the SFS is
run again to select another feature. The cycle of a selection phase
(with the SFS), followed by a possible unselection phase, is re-
peated until either the number of features required is reached,
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or until the SFS phase fails to select a feature immediately fol-
lowed by the failure of the unselection phase to remove a feature,
in which case it is impossible for the selected feature subset to
change and the algorithm must terminate.

The advantage of the SFFS over the SFS, or other greedy fea-
ture selection algorithms, is its ability to avoid nesting. Nesting
occurs in greedy selection algorithms if a feature is selected
early on that is not a member of the optimal feature subset, as
it cannot be removed. Another algorithm, the plus , takeaway

algorithm, can also avoid nesting. Its operation is similar to
the SFFS and it provides similar results but has a longer exe-
cution time as it always removes features, whereas the SFFS
judiciously decides whether to remove a feature or not. Indeed
the SFFS may not find the optimal feature subset, as it is inher-
ently a sub-optimal search, but will often yield results compa-
rable with those of an exhaustive search, with significantly less
search time.

D. Design of a Subject-Specific System

While ideally we wish to develop a subject-independent car-
diorespiratory-based sleep stager, a subject-specific system also
has utility, both potentially in multi-night studies, and in pro-
viding proof-of-concept as to whether sleep staging can be pro-
vided by the ECG and respiration dataset alone.

As with all the systems described here, the quadratic dis-
criminant classifier model is used to discriminate between the
three classes W, R, and S for a single subject’s recording.
To train the classifier (i.e., estimate class prior probabilities,
covariance matrices, and means) 20% of the epochs for that
night are randomly selected. Before the training data is chosen
the prior probabilities for each of the three stages occurring
are estimated using all 37 subjects. These probabilities are
calculated as: , , . The
training data is chosen in such a way that the ratios of each
class are in the proportion of the prior probabilities where
possible. However, if the covariance matrix of a class is es-
timated using as many (or less) observations than there are
features, the matrix will be singular, prohibiting the use of
discriminant analysis. In such cases the class containing in-
sufficient observations is simply eliminated from the training
data. To test the system the remaining 80% of the subject’s
epochs are presented to the classifier.

In Section IV, we present the overall accuracy (the percentage
of correctly classified epochs from the test set), the absolute
error from the true sleep efficiency, and Cohen’s kappa statistic

. A value above 0.7 is typically taken to indicate a high-de-
gree of intersystem reliability. The accuracies and obtained
for each of the 37 subjects are averaged to give a mean accu-
racy and . Each subject’s accuracy and is itself derived from
an ensemble of ten classifier runs, with differing selections of
training data each time. The accuracies are derived from an en-
semble average so as to remove any bias caused by the random
selection of the training data.

E. Design of a Subject-Independent System

To construct a subject-independent classifier, features from
the other 36 subjects were pooled together to form the training
data for the classifier, again training a 3-class—W, R, and

S—classifier by estimating the class prior probabilities, covari-
ance matrices, and means. This was repeated 37 times, leaving
one subject out of the training data each time. In each case
the remaining subject was used to test the system. Obtained
accuracies and , from each of the 37 runs, are averaged for an
overall estimate of performance.

F. Design of an EEG Comparative System

To gain a perspective on the results of the subject-specific
and subject-independent systems, two further systems were de-
signed using spectral and time domain features from the EEG
in place of the cardiorespiratory features described. These sys-
tems were designed in accordance with standard approaches
outlined in the literature [29]–[34], which recommend using
EEG spectral features for sleep staging. The EEG spectral fea-
tures used are: average power in the delta (0.75–3.75 Hz), theta
(4–7.75 Hz), alpha (8–12 Hz), spindle (12.25–15 Hz), and beta
(15.25–30 Hz) frequency bands [34].

The powers in the designated frequency bands were cal-
culated using a periodogram estimator. The 30-s EEG epoch
was windowed using a sliding 2-s Hanning window with a 1-s
overlap into 29 segments. The periodogram was constructed by
averaging the square of the DFT of each segment over all 29
segments. The relevant frequency bands were then integrated
to give the resulting band power.

The time domain features were the Hjorth parameters of ac-
tivity, mobility and complexity [29]. They were derived from the
entire 30-s epoch. Letting denote the EEG epoch containing

samples, the Hjorth parameters are defined as

where is the first derivative of , is the standard devia-
tion of , and is the mean of . We also note that the activity
is equal to the variance of .

Using the same training and classifier paradigm as outlined
above, the subject-specific and subject-independent classifiers
were designed and tested.

IV. RESULTS

A. Subject-Specific Results

Table III details the results for the subject-specific sleep
staging system for all subjects, and for subjects broken down
by low and high AHI indices, after presenting all 27 features to
the features selection algorithm.

In Table IV, we list the features selected by the SFFS al-
gorithm. The indices listed refer to the feature list defined in
Table II.

B. Subject-Independent Results

In Table V we present the results for the subject-independent
sleep staging system for all subjects after presenting all 27 fea-
tures to the feature selection algorithm.
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TABLE III
SUBJECT SPECIFIC RESULTS

TABLE IV
SUBJECT SPECIFIC FEATURES

TABLE V
SUBJECT-INDEPENDENT RESULTS

Table VI lists the features selected by the features selection
algorithm in the subject-independent case.

C. Low AHI Versus High AHI

We wish to investigate the difference in performance between
subjects with low apnea-hypopnea indices (AHI) and those with
high AHIs. We repeat the above-mentioned subject-specific and
subject-independent experiments with the subjects split into low
AHIs ( 10 apneas or hypopneas per hour) and high AHIs. There
were 14 subjects with high AHIs the mean AHI was 26 and the
standard deviation was 19.8. The remaining 23 subjects with
low AHIs had a mean AHI of 3.4 and a standard deviation of
2.2.

D. Comparative EEG Results

Tables VII and VIII summarize the results of the subject-spe-
cific and subject-independent systems when trained using the 8
EEG features described earlier (no feature selection algorithm
was used). As for the cardio-respiratory scoring system, we pro-
vide results broken down by high and low AHI class.

V. DISCUSSION AND CONCLUSION

Subject-specific and subject-independent simplified car-
diorespiratory sleep staging systems have been designed and
compared to a standard EEG-based sleep staging system using
a database of 37 overnight polysomnographs.

The cardiorespiratory subject-specific system performs less
well across all subjects ( , ) than
its EEG counterpart (87%, ). However, its perfor-
mance suggests that ECG and respiration together represent
valid physiological signals for estimating sleep stage with a
reasonable degree of accuracy. In fact, considering that

TABLE VI
SUBJECT-INDEPENDENT FEATURES

TABLE VII
EEG SUBJECT SPECIFIC RESULTS

TABLE VIII
EEG SUBJECT INDEPENDENT RESULTS

is generally accepted as indicating a high degree of agree-
ment, the cardiorespiratory subject-specific system performs
well. To place the classification performance in context, con-
sider that optimum EEG-based subject-independent systems
typically have performances in the 80–85% range [30]–[33]
(averaged over both normal and pathological populations).

However, in the transition to a subject-independent system,
the cardiorespiratory-based system is less successful. Some
degradationinperformanceshouldbeexpected;suchdegradation
is seen even in the EEG-based system by a 0.07 decrease
in the coefficient. However, in the cardiorespiratory-based
system we observe a more significant drop in the coefficient
of 0.24 (across all subjects). Heuristically, this appears to be
primarily due to the fact that the distribution of our chosen
cardiorespiratory features exhibits larger intersubject variability,
as compared to the EEG-based features. These variations may
be caused by inadequate choice of normalization strategy, or
more likely by real intersubject physiological variations.

We have considered whether the presence of significant SDB
is a detrimental factor in the performance of our systems.
Intuitively, it is plausible that the micro-arousals associated
with SDB could adversely affect the scoring system. As a
benchmark, we compared the performance of the EEG-based
systems on low-AHI and high-AHI subjects, and found that
there was no statistically significant difference. For the subject-
specific cardiorespiratory scoring system, there is a statistically
significant decrease in performance in high AHI
subjectsascompared to lowAHIsubjects.This isnotunexpected,
as apneic events will disturb both the sinus rhythm and the
respiration, although the same difference in performance is
not observed in the subject-independent results. The subject-
independent system performs similarly on both subject groups.
This indicates that the influenceofSDB-relatedcardiorespiratory
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Fig. 1. (a) Plot of mean RR interval versus respiratory frequency for Subject 15. The values for Wake epochs are denoted with “x,” non-REM sleep epochs
are marked with “o,” and R epochs have a “+” symbol. Also shown is the mean of each class and the width of plus and minus one standard deviation. There is
reasonable separation between three classes. (b) Plot of mean RR interval versus respiratory frequency for Subject 4. There is separation of classes in RR interval,
but not in respiratory frequency. (c) Plot of mean RR interval versus respiratory frequency for Subject 25. There is separation of classes in respiratory frequency,
but not in RR interval. (d) Plot of mean RR interval versus respiratory frequency for Subject 6. There is minimal separation of classes.

events is not the sole limiting factor in cardiorespiratory sleep
staging.

It is instructive to consider the wide intersubject variability of
the features available from the cardiorespiratory signals. Fig. 1
shows four scatter plots (for four different subjects) of the epoch
mean RR interval (feature 9) against the epoch mean respiratory
frequency (feature 22). The subject in Fig. 1(a) has good inter-
class separation in both RR interval and respiratory frequency.
Fig. 1(b) shows good separation in the RR interval only. Fig. 1(c)
shows good separation of respiratory frequency, while Fig. 1(d)
shows poor interclass separation for both features. In the sub-
ject-specific system the subjects in Fig. 1(a)–(c) will achieve
good results, the subject of Fig. 1(d) will not. However, if we
were to train the system using the data in Fig. 1(a)–(c), the re-
sults would be poor for the subject in Fig. 1(d).

We note that features 8 and 9, the mean and the
mean are consistently chosen by the feature selection

algorithm. In particular we note that the mean is chosen
above the mean in the subject-specific systems, but
this is reversed in the subject-independent case. It seems that
the mean discriminates well in the subject-specific sys-
tems but the discriminating qualities are not consistent across all
subjects. However, the mean does seem to generalize
well because it measures relative local change in heart rate and
identifies arousals through a brief rise in heart rate, even if the
heart rate is lower than some earlier epochs of sleep. Similarly,
the onset of sleep is found by a slowing of the heart rate after
some arousal, even when the heart rate is still faster than some
epochs of waking. In addition, we note that while a large number
of features are chosen by the feature selection algorithm in each
instance, very comparable results can be obtained using the first
five or six features chosen.

In this paper we utilize ECG clinical data which contains
some clipping of the R peaks due, most likely, to a inadequate
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choice of amplifier settings during the signal capture. We should
state, however, that our results do not justify the relaxation of the
quality applied to ECG recording in polysomnography. On the
contrary, if research into ECG-based PSG techniques is to suc-
ceed, further high signal quality databases are required. Hence,
we strongly encourage the continuation and improvement of
quality ECG recording in PSG.

A possible point of interest is the delay inherent in some in-
ductance plethysmography devices. Although there was no delay
associated with the device used in this study, some methods may
contain a delay in recording, relative to the ECG, of 2 s or 3 s.
However, we argue that even when such a delay exists it is in-
significant since we are using a 30-s epoch, and since only our
interpretation of transitional epochs (epochs on the boundary of
a sleep state change) will be affected by such a delay.

A small number of non-EEG-based sleep staging systems
have been described in the literature. In the small study de-
scribed in [35], the authors achieved excellent accuracy using
measurements of RR intervals and respiration in normal in-
fants. However, infants have quite different sleep patterns and
cardio-respiratory variability than adults, so it is hard to know
how their approach will generalize. In [36], body movement
was used to achieve accuracies of between 78% and 89% in
the same discrimination task as ours; however, they report their
results using a subject-specific classifier, and do not give any
results for a subject-independent system.

There are many potential confounding factors which we
have not attempted to consider in this study. Specifically, it
is plausible that pathologies such as congestive heart failure,
cardiac dysrhythmias, and chronic obstructive pulmonary dis-
order, or medications such as beta-blockers or ACE inhibitors
will influence both cardiac and respiratory dynamics. These
effects may well lead to misclassification of sleep stage if not
considered. However, in this first study, we are interested in
evaluating potential performance in a general population being
considered for obstructive sleep apnea, and without signifi-
cant co-existing morbidity. We conclude that measurement of
ECG and respiration can provide information related to sleep
stages, and its performance on a subject-specific basis is quite
impressive. However, further work will be required to improve
the performance of a truly subject-independent automated
cardiorespiratory sleep stager.

APPENDIX I
COHEN’S KAPPA COEFFICIENT

As a measure of system performance we will use Cohen’s
Kappa Coefficient [28]. is a measure of interrater agree-
ment, where the two raters in our case are the expert sleep
technician (who scored the polysomnograph recordings) and
the automated sleep staging system. is a chance-adjusted
measure of agreement which varies from for perfect
agreement to for a performance no better than chance.
The need for such a measure is evident when we consider the
relative proportions of the sleep stages, W:S:R, whose ratios are
approximately 25:65:10. Therefore, with complete ignorance
we could score all stages as S and achieve 65% accuracy, which
may appear to be quite a reasonable performance. However, in
this instance , which is a better measure of performance.

TABLE IX
CONFUSION TABLE FOR CALCULATING COHEN’S KAPPA COEFFICIENT

For completeness, consider the definition of , and an example
of its calculation.

Assume that 2 raters, A and B, are allowed to classify ob-
servations into one of classes. We construct Table IX, where
each entry is the number of times Rater A classified an
observation as class when Rater B classified as class . Alter-
natively, we can express this as a fraction of the overall total by
dividing by . This fraction is shown in parenthesis in Table IX.

The total proportion of observer agreement is the sum of
the diagonal of Table IX

(4)

The proportion of observations that would be classified by
chance by both Rater A and Rater B into class is

Therefore, the total proportion of agreement expected by
chance is given by

(5)

Now we can define as the proportion of agreement adjusted
for chance

(6)

We will give a small example to illustrate its use. Assume two
raters classify the following 16 observations into one of three
classes, say A, B and C. Tabulating the resulting classifications
(as in Table IX) in Table X we see that they agree 10 times out
of 16 observations giving an accuracy of 62.5%. We can now
calculate using (4)–(6)

APPENDIX II
RR INTERVAL SERIES ERROR

To investigate the error caused to the RR interval series by
clipping in the ECG, we simulated the error using ten unclipped
overnight ECG recordings. We ensured that the ECG signals
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Fig. 2. (a) Plot of an epoch of the RR interval series versus time. The solid plot is the RR interval series derived from an unclipped section of ECG. The dashed
plot is from the same section of ECG after clipping at 80% its median R peak amplitude. (b) Plot of the spectra of the given RR interval series from (a). Also shown
in the dotted plot is the difference between the spectra powers.

TABLE X
EXAMPLE CONFUSION MATRIX FOR CALCULATING K

were unclipped by complete visual examination of the modu-
lation in the ECG R peak amplitudes over the night’s recording.
(A clipped ECG will exhibit periods of zero modulation in the
R peak amplitude.) Next, we found the R peak locations in each
ECG signal and derived the corresponding RR interval series.
The ECG signals were then zero-meaned and severely clipped
at 80% of their median R peak amplitude. The error between
each “true” RR interval, derived from the unclipped ECG, and
the new RR interval, derived from the clipped signal, was com-
puted, using our standard QRS detection algorithm. The mean
RR interval error was samples and had a standard devia-
tion of 0.97 samples; for our data sampled at 256 Hz. We con-
clude that the clipping introduces a nonbiased error of small
magnitude in the RR interval series. Table XI shows the his-
togram of all RR interval errors measured in samples. It is clear
from the histogram that after the clipping the RR interval-de-
rived is rarely more than 1 sample in error. To put this error
in perspective the standard deviation of the difference between
consecutive RR intervals was calculated as 9.1 samples over all
10 recordings. Hence the standard deviation of the RR interval
error introduced is approximately 10% of the variation in the RR
interval series itself. In addition, we argue that this type of noise
introduced to the RR interval series will have little effect on the
RR interval spectrum, as it will be spread uniformly across the
spectrum. Also, since the RR interval error is zero-meaned we
would not expect it to excessively perturb the mean RR interval
of an epoch. Fig. 2(a) shows two RR interval epochs one from

TABLE XI
RR INTERVAL ERROR HISTOGRAM

Fig. 3. Calculation of an ECG-derived respiration signal by measuring the
amplitude of the T wave in the normalized baseline-reduced ECG for each
cardiac cycle.

a section of unclipped ECG, and the other from the same sec-
tion of ECG after clipping. Fig. 2(b) shows the corresponding
interval-based spectra.

APPENDIX III
ECG DERIVED RESPIRATION SIGNAL

Since our goal in deriving the EDR is to consider relative
changes in respiration amplitude or frequency, it is appropriate
to attempt to normalize the ECG signal prior to calculating the
EDR. This is due to the fact that the ECG amplitude may be af-
fected by body position, and slow variations in electrode contact
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Fig. 4. (a) Unprocessed ECG-derived respiration signal resulting from calculation in Fig. 3. (b) Corrected ECG-derived respiration signal after removal of baseline
drift.

impedance over a night’s recording. To normalize the overall
ECG amplitude, we attempt to ensure that the signal has ap-
proximately the same average power over time. This is achieved
by using a sliding window of 2-min duration, with an overlap
of 1 min from one window to the next. The standard devia-
tion of the raw ECG signal under each window is calculated,
and the signal is then linearly scaled by the standard devia-
tion between consecutive window center locations so that the
standard deviation of every section of ECG is approximately
equal to unity. To be specific, if the standard deviation under
the window centered at sample is , and the standard de-
viation under the next window centered at sample is ,
with the ECG sample points in between denoted as , for

, then the corrected ECG points are,
, for . In this

way, the signal is linearly scaled between the two window cen-
ters and has a standard deviation approximately equal to unity.
This is repeated for every consecutive pair of window centers.
The choice of window length is arbitrary but must not be so
small as to remove modulation effects at frequencies of interest
(i.e., the EDR).

A further potential confounding factor in calculating the EDR
is the presence of baseline drift in the original ECG signal.
The most effective strategy appears to be removal of as much
baseline drift in the original ECG, followed by subsequent
post-processing of the EDR itself.

Baseline removal in the original ECG is achieved as follows.
Using the normalized ECG signal described above, a median
filter of width 3 s is centered at every R peak. The value resulting
from the median filter centered at each R peak should be an ap-
proximation of the value of the PQ segment for that R peak,
which is hopefully close to the isoelectric line for that signal.
This value is used as an estimate of the baseline corresponding
to that R peak. The signal is then linearly detrended between the
baseline estimations at each R peak, i.e., the baseline between
each R peak is represented piecewise linearly and this piecewise
linear estimate is subtracted from the previously power-normal-
ized ECG signal. The EDR signal is now estimated from the
normalized, and baseline removed ECG signal by searching for
the T wave peaks following every R peak and either choosing
the peak value of the T wave peak, or the area under the peak

and its neighboring samples. Fig. 3 illustrates how the EDR is
derived from the T wave peak directly, which is appropriate for
signals with relatively low noise. In this study we arbitrarily in-
tegrate 11 samples about the T wave peak. However, despite the
use of ECG signal normalization, and baseline removal as de-
scribed above, sudden baseline changes were still observed in
the EDR.

These changes are probably due to T wave morphology
changes, such as rotation of the electrical axis of the heart
caused by altered body position.

A final step was taken to remove these artifacts. To obtain
an estimate of its baseline, the EDR signal was passed twice
through a median filter of length 4 s. The resulting baseline es-
timate was subtracted from the original. The first pass produces
an estimate of the EDR baseline. The second pass removes oscil-
latory information that may still exist from the EDR in the first
baseline estimate. The resulting EDR signal was then normal-
ized over the entire recording to have a zero mean, and unit vari-
ance (since the amplitude of this EDR modulation is highly sub-
ject and electrode-position dependent). Fig. 4 shows a section of
EDR signal both before and after this final post-processing step.
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